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ABSTRACT: We describe a conceptual design of a distributed
classifier formed by a population of genetically engineered microbial
cells. The central idea is to create a complex classifier from a
population of weak or simple classifiers. We create a master
population of cells with randomized synthetic biosensor circuits
that have a broad range of sensitivities toward chemical signals of
interest that form the input vectors subject to classification. The
randomized sensitivities are achieved by constructing a library of
synthetic gene circuits with randomized control sequences (e.g.,
ribosome-binding sites) in the front element. The training
procedure consists in reshaping of the master population in such a way that it collectively responds to the “positive” patterns
of input signals by producing above-threshold output (e.g., fluorescent signal), and below-threshold output in case of the
“negative” patterns. The population reshaping is achieved by presenting sequential examples and pruning the population using
either graded selection/counterselection or by fluorescence-activated cell sorting (FACS). We demonstrate the feasibility of
experimental implementation of such system computationally using a realistic model of the synthetic sensing gene circuits.

KEYWORDS: chemical pattern recognition, consensus classification, distributed sensing, machine learning,
microbial population engineering, synthetic circuits

Pattern recognition and classification is one of the most
important statistical disciplines.1 Its applications span across
disciplines such as computer vision,2 natural language
processing,3 search engines,4 medical diagnosis,5 classification
of DNA sequences,6 speech recognition,7 computational
finance,8 fraud detection,9 and many others.10 In these contexts
usually a system that solves a pattern recognition problem
learns from the “training” data presented to it. Using the
“training” data, such a system forms an internal model to
classify new previously unseen data. Typically these models are
built in regular computers, although alternative approaches
have been proposed.11,12

Many pattern recognition algorithms are biologically
motivated. Biological organisms perform decision making
based on classification of external environmental cues at all
levels from intracellular (e.g., ref 13) to organismal14 and even
population-wide.15 The development of artificial neural net-
work (ANN) classifiers was inspired by the brain’s natural
ability to perform complex computational and classification
tasks.16 The main principles of brain dynamics, its layered
organization and ability to learn by adapting strengths of
interneuron synaptic connections (plasticity) is mimicked in
ANN by multilayered perceptrons and various learning
algorithms.17

A different learning approach is motivated by the adaptive
immune system of jawed vertebrates, which employs a
population of lymphocytes (T and B cells) with a diverse
genetically encoded library of recognition specificities in order
to implement learning, memory, and pattern recognition
capabilities.18,19 Lymphocytes with different receptor variants
undergo essentially a supervised learning procedure in central
lymphoid organs, being presented self-antigens as examples.
Positive selection retains T cells capable of interacting with the
major histocompatibility complex while negative selection
eliminates self-reactive T and B cells. Subsequent exposure of
mature lymphocytes to foreign antigens results in positive
selection of the reactive clones. The adaptive immunity
classifier is not a single complex multivariate system with
parameters adjusted in course of learning. Rather, it is a
distributed system that consists of a large number of relatively
simple cellular classifiers and implements learning through
deletion of outliers. When trained, it solves a consensus
classification problem, reporting the absence of pathogens if
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and only if each cellular classifier does not respond to presented
antigens. The main principles of the natural adaptive immune
system of jawed vertebrates have inspired the branch of
computer science known as Artificial Immune Systems
(AIS).20−22

In this work, we propose to use synthetic biology to adapt
biological systems themselves for solving complex classification
tasks. While the most straightforward solution for this problem
would be to design a single gene circuit that would produce
output signal sufficient for classification, in practice, the
uncertainty and wide dynamic range of possible signals of
interest would render this solution suboptimal. In such
situations, it appears useful to borrow the principles underlying
the distributed classification abilities of natural adaptive
immune system and create a heterogeneous population of
microorganisms with different synthetic gene circuits capable of
performing classification tasks based on consensus strategy. The
desired binary classifier should produce a positive response (for
example, above-threshold population-averaged fluorescence
level) to positive inputs and negative response (below-
threshold fluorescence) to negative ones. The learning
algorithm then should consist of shaping the population in
such a way that the population collectively “arrives” at a
probably correct decision.
The idea of aggregating many simple classifiers to yield a

better classifier is a widely used strategy in machine learning
that capitalizes on the idea that using a set of classifiers that
produce barely better results than random guessing can achieve
arbitrarily high accuracy when combined appropriately.23 It also
can be cast as a function approximation problem in which a
complex target function is approximated by a weighted sum of
multiple simpler functions, such as radial basis functions24 or
wavelets.25 Inspired by these ideas, we propose to use
genetically engineered cells with limited abilities to perform
complex classification tasks.
Here, we present a specific biological implementation of this

general distributed pattern recognition system concept using a
model of synthetic gene regulatory circuits in engineered cell
populations. The proposed implementation requires to build a
cell library with genetically encoded randomized sensitivities to
external chemical signals to be classified. Such libraries have
been successfully constructed for optimization of synthetic
biological circuits.26−28 One could in principle envision a
system in which different strains were placed in different
chambers and probed separately, and then, the classification
task would be done in silico. However, this approach would
entail a complex multichamber, multichannel system that would
be difficult to operate in an open environment. Instead, we
propose here to use a library to form a master classif ier
population that is pruned to learn how to solve a certain
classification task. In the properly trained system, classification
is based on a single population-averaged output, which
simplifies the device design and operation considerably. The
learning is done by examples: cells with erroneous outputs are
gradually attenuated from the population, while the “correct”
cells are amplified. As a result of multiple iterations of pruning/
amplification, a distributed classifier trained for a specific task
emerges from the master population. We envision that an
arbitrary external input subject to recognition can be encoded
by a combination of chemical inputs capable of generating the
engineered cellular response. In this paper, however, we will
consider the most straightforward case when the vector of
chemical concentrations is the input signal subject to

classification. In the following, we demonstrate the general
principle of this classification procedure and describe its
implementation using a model of a synthetic genetic circuit
based on the lambda phage PRM promoter.13

■ RESULTS AND DISCUSSION
Learning by Examples. In this section, we describe the

general idea behind the training of a distributed classifier by
presenting a set of positive and negative examples. In the
following, we denote the set of input variables to be classified as

∈x M . A classifier is the function y = 2H ( f(x) − θ) − 1,
such that if f(x) > θ, the answer is y = 1, and otherwise, y = −1.
Here H(·) is the Heaviside function, θ is a scalar threshold, and
f(x) is the scalar function of the inputs. The heart of the pattern
classifier is the function f(x) that minimizes the classification
errors for a given distribution of positive and negative inputs.
In general, the classifier function is not known a priori and

has to be learned by training the classifier using examples
(training data). The training of a classifier by examples consists
in finding a function f(x) that minimizes the error in mapping
of a given set of N examples xi to a set of binary outputs, yi =
{−1,+1} which label the examples. In the following, we will say
that if the output yi = +1, the example i belongs to the
“positive” class and if the output is yi = −1 the example i
belongs to the opposing “negative” class.
In our proposed population-based classifier, x will be a set of

concentrations of chemical signals to which cells are subjected,
and the cells are assumed to contain gene circuits that produce
a fluorescent signal zi(x) in response to the input signal x. The
overall signal function, f(·), will be the normalized linear sum of
the individual fluorescence signals from all Nc cells in the
trained population:
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The key to the “trainability” of the distributed classifier is to
prepare a master population of cells with broadly varied
functions zi(x), so this population can be appropriately shaped
to perform the needed classification task. This can be achieved
using synthetic gene regulatory circuits with randomized
control elements such as promoter regions, ribosome binding
sites, or other sequences as described in detail below.
We assume that the master population contains cells that

individually provide correct answers to subsets of the data to be
classified but that, in general, no single cell provides correct
answers to all data (weak classifiers). The goal of training is
therefore to shape the master population to create a distributed
consensus classifier that performs better then any cell
individually. Such training must amplify the cells providing
correct answers as frequently as possible and conversely
suppress the cells with poor overall performance. Thus, our
proposed learning procedure consists in modifying the
composition of the cell population based on the examples
with known outcomes. The details of our training algorithm for
the specific implementation of a genetic sensing circuit are
outlined below.

Distributed Classification with Randomized Synthetic
Gene Sensors. Here, we outline an implementation of the
proposed distributed classifier with a diverse population of
bacterial cells containing synthetic sensory genetic circuits with
randomized parameters. For simplicity we focus on a scalar
input with only one chemical signal affecting the gene circuit,
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however, the same approach can be straightforwardly
generalized to the multidimensional vector input. In our two-
gene design (Figure 1), the sensing and the reporting

functionalities are split between the two genetic modules.
The sensing module is monotonically induced by the external
chemical signal X and drives the synthesis of a transcription
factor U. The second promoter is regulated by U and drives the
expression of a reporter protein, for example, green fluorescent
protein (GFP). The reporter promoter is activated by U at
intermediate concentrations and inhibited at higher concen-
trations, thus being active only within a finite range of
concentrations of U. The classic well-characterized example of
such promoter is the promoter PRM of phage lambda, which is
activated by intermediate concentrations and is repressed by
high concentrations of the lambda repressor protein CI.13,29

This two-gene circuit can be modeled by the following set of
biochemical reactions

̷ ⎯ →⎯⎯ → ̷
μ

U U0 ; 0
r x( )u u

̷ ⎯ →⎯⎯ → ̷
μ

GFP GFP0 ; 0
r u( )g g

where x and u are the concentrations of X and U, ru(x) and
rg(u) are the effective production rates of U and GFP,
respectively, and μu and μg are the degradation rates of U
and GFP. The rates of gene expression in this system can be
described by standard Hill functions:
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where α describes the basal expression from the sensor
promoter in the absence of the signaling molecule X, Au is the
dissociation constant of X with the sensor promoter, the Hill
coefficient pu characterizes the cooperativity of activation of the
sensor promoter, pg characterizes the cooperativity of activation
and repression of the reporter promoter by the transcription
factor U, Ag is the dissociation constant for activation and
repression of the reporter promoter by U (we assume the
activation and repression cooperativities and dissociation

constants to be the same), mu and mg describe the overall
strength of production of U and GFP, respectively. Noteworthy,
such Hill functions based model provides a simple yet adequate
approximation of more complex response functions required to
describe real promoters29 (see Supporting Information Section
3).
In mass-action approximation the dynamics of GFP

production in this system is described by the following system
of ordinary differential equations:

μ= −u
t

r x m u
d
d

( ; )u u u (4)

μ= −z
t

r u m z
d
d

( ; )g g g (5)

where z is the concentration of GFP. The steady state
concentration of GFP as a function of the concentration of the
external chemical signal X can be found from the eqs 4 and 5 as

μ

μ
* =z x m m

r r x m m
( ; , )

( ( ; )/ ; )
u g

g u u u g

g (6)

The function z*(x) is bell-shaped in a broad range of mu/μu ∈
(Ag,Ag/α) (Figure 2). Varying mu/μu allows to create a library of

circuits which act as low-pass filters (mu/μu ≤ Ag), high-pass
filters (mu/μu ≥ Ag/α), or tunable bandpass filters for the
intermediate values of mu/μu. As described in the following
sections, such a library can be used to train a cell population-
based distributed classifier. Since common sensor promoters
can have a regulatory range of over 103 (α = 10−3),30,31 to
create a library that contains low-pass, bandpass, and high-pass
filters, the mu/μu ratio has to be varied at least 1/α = 103 fold
within [Ag,Ag/α] range (see Figure 2). Such libraries have been
widely constructed experimentally: mu can be varied over more
than 105 fold range by varying the DNA sequence within and
near the ribosome binding site of the gene of interest;32,33 this
range can be further expanded by modulating the sensor
promoter strength;34 mu/μu ratio can also be modulated by
varying the stability of the U coding mRNA as well as the
stability of the protein U itself.26,35−37

The modular architecture of the classifier circuit proposed
here allows us to independently select and optimize the sensor

Figure 1. Modular genetic circuit proposed for implementing a
distributed genetic classifier. Sensing and response functionalities are
split into separate modules. In the first module (sensor), an inducible
promoter drives the expression of the transcription factor U in
response to the applied signaling molecule X. The response function of
the promoter is chosen to be monotonic (see inset). In the second
module (reporter), another inducible promoter drives the expression
of a reporter (GFP) in response to induction by U. The promoter is
activated by intermediate concentrations of U and inhibited by high
concentrations of U. Thus, the resulting response function of the
entire two-promoter circuit to the concentration of signaling molecule
is bell-shaped for the relevant values of the circuit parameters as shown
on the inset.

Figure 2. Steady state GFP concentration (z*) as a function of the
concentration of the external chemical signal X for the modular
classifier circuit shown for a range of mu values representing a range of
the relative strengths of the sensor promoter (Figure 1). Nondimen-
sional circuit parameters are μu = μg = mg = Au = 1, Ag = 20, pg = pu = 2,
α = 10−3.
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and the reporter functionalities in order to maximize the
classifier performance. Well-characterized sensor promoters,
which can be induced by a variety of chemical signals with the
appropriate monotonic response, are common30,31,38−40 and
can be readily combined with the reporter promoter such as the
well characterized lambda phage promoter PRM.

13,29 For these
reasons the proposed two-gene sensory circuit appears to be
well-suited for experimental implementation of a distributed
cell population based classifier.
Classifier Training Algorithm. In order to train a classifier

we need to be able to sort individual cells based on their
response to a set of known examples. A hard-decision algorithm
implies that if a given example xi belongs to a positive class, yi =
+1, and the GFP level in j-th cell is above a threshold zj*(xi) >
θ, then that particular cell should be retained in the population
because the cell provides the correct answer. Meanwhile, the
cells not reaching the threshold expression level after
presenting a positive example should be removed from the
population. On the other hand, if a negative example is
presented (yi = −1), the cells generating above-threshold
fluorescence should be eliminated and the cells that are below
threshold should be retained. By this selection mechanism, we
ensure that only the cells generating correct answers survive.
However, this hard-decision training algorithm in most

practical situations leads to poor performance. As mentioned
above, in general, each cell is a weak classifier and so it cannot
provide the complete classification solution. If positive and/or
negative categories encompass a broad range or several distinct
ranges of inputs, a subpopulation in which all cells generate
above-threshold output for positive examples and below-
threshold output for negative examples would be empty.
Thus, an outright elimination of all cells producing “incorrect
answer” to any of many training examples would eventually lead
to elimination of all cells. To avoid this undesirable outcome, a
“soft-training” algorithm has to be employed in which even the
“erroneous” cells have a chance to remain in the population,
and so the resultant population-based classifier will produce the
correct answer only by the population average, not the
unanimous decision of all cells.
We postulate that the elimination of cells from the

population is governed by two sigmoidal cell survival
probability functions p+ (zj*) = (1 + ξ)−1 + (1 + ξ exp(−zj*/
γ))−1 and p− (zj*) = 1 + (1 + ξ)−1 − (1 + ξ exp(−zj*/γ))−1 for
positive and negative examples correspondingly, where ξ =
exp((8γ)−1) and 0 ≤ zj* ≤ 1/4 are chosen to encompass the
entire range of possible values of zj (eq 6) (Figure 3). These
functions are chosen such that the cells that respond perfectly
to the presented example (zj* = 1/4 or zj* = 0 for a positive or a
negative example correspondingly) are retained in the
population (p± (zj*) = 1). Otherwise the cells are eliminated

from the population with a probability that depends on the cell
fluorescence zj* and the “rigidity” of training γ. For very small γ,
cells not responding to the currently presented input are
eliminated with high probability. This can potentially eliminate
many cells required to recognize other positive examples xi
from the pattern being taught leading to the poor overall
performance. For too large γ (weak elimination), the learning
rate slows down significantly requiring unreasonably large
number of training iterations in order to achieve high
performance. Therefore, an optimal value of the parameter γ
can be chosen to balance performance with the learning speed.
In general, this value will be different for each individual
problem. Experimentally these selection functions can be
implemented via fluorescence activated cell sorting (FACS)
or well established genetically encoded positive/negative
selection systems.41 Conveniently, in the latter case positive
or negative example is indicated by applying the corresponding
selective compound to the cells and its concentration can be
used to adjust the rigidity of training (γ).
As usual in the design of classifiers, the output element of the

classifier must be a threshold element. In the distributed
classifier described here, the mean population fluorescence f(x)
has to be compared with a suitably chosen threshold θ such that
the above-threshold fluorescence ( f(x) > θ) corresponds to the
positive class, and below-threshold fluorescence ( f(x) < θ) to
the negative class. The optimal threshold θ can be found by
presenting the training set of examples and minimizing the
percentage of incorrect answers. The training procedure
described above can be formalized as Algorithm 1 (Figure 4).

In the following sections we use this algorithm to train a
computational model of the distributed gene expression
classifier and analyze its performance using sets of simulated
data. We generate these sets using the model of the synthetic
gene circuit (eq 6) presented above. In order to simulate the
combined effects of biological and instrumental noise on the
performance of the classifier we will assume that the resultant
mean fluorescence of the population contains both additive and
multiplicative noise:

∑ ε ζ= + +
=

f x
N

z x( )
1

( )(1 )
c i

N

i
1

c

(7)

where ε and ζ are independent normal random variables with
the respective means of 0 and σ/4 and standard deviations σ
and σ/4. As usual in performance evaluation, each data set is
divided into two parts, one for training and another for testing,
and the overall performance of the classifier is measured as the

Figure 3. Cell survival probabilities during training upon presentation
of a positive (p+ (zj*; γ)) or a negative example (p− (zj*; γ)).

Figure 4. Algorithm 1: Algorithm for training the gene expression
classifier.
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percentage of correct answers on the test sets. The classifier
performance is calculated using Algorithm 2 (Figure 5).

Classification Problems. Before we present our numerical
results demonstrating the performance of the distributed
classifier, let us discuss the motivation for using nonseparable
data sets as representative examples of real world classification
problems. If the classes were completely separated, then a
properly trained classifier would be able to identify the
boundary (or a manifold in a multidimensional input space)
between the classes and perform classification with 100%
accuracy. However, in reality different classes often overlap, and
therefore 100% accuracy of classification cannot be attained.
Real-world biological and medical data frequently consists of
overlapping (nonseparable) classes.42,43 To illustrate how
nonseparable classes can emerge even in a simple biochemical
system, we consider an example of two toxins that additively
contribute to the overall toxic effect on the cells. In such case, in
a two-dimensional plane of two toxin concentrations there exist
a straight line where the overall toxicity is equal to a certain
threshold;44,45 thus, the positive and negative classes are
separable (Figure 6A). For specificity, we define a positive class
as a domain of concentrations of Toxin A and Toxin B, which
cause less than 50% population mortality after a specified test
duration; all other combinations of concentrations by definition
are assigned to the negative class. Now, let us assume that the
concentrations of both toxins are distributed according to some
random distribution (e.g., log-normal), but our sensor can only

measure concentration of only one of the toxins (e.g., Toxin A).
In this case, the two-dimensional positive and negative classes
are projected onto Toxin A axis and become nonseparable
(Figure 6B). The concentration of the unmeasured Toxin B
becomes a hidden variable that makes positive and negative
classes nonseparable. More generally, all the unknown or
unmeasured environmental conditions can render two sets of
measured conditions nonseparable. In such cases, the
classification task consists of learning the optimal discrim-
ination boundary along Toxin A axis that maximizes the
discriminatory power of the classifier at the level below 100%
accuracy. In the absence of a priori information about the
known and unknown toxin distributions and their effect on cell
viability, the optimal decision boundary will have to be inferred
solely from random examples presented to the classifier, thus
the performance of a real classifier will be even lower.
In order to clearly demonstrate the salient features of the

classifier and study the limits of its performance, we will
continue with two “idealized” classification problems. First, we
consider the case of discriminating data generated by two log-
normal distributions of input chemical concentration with some
overlap between the two classes (Figure 7A). This example is

qualitatively similar to the two-toxin example discussed above,
except that there is a nonzero probability of having points far
from the decision boundaries (it is a harder problem). After
that, we test the distributed classifier on a more challenging
problem of discriminating the data generated by complex
distributions (one unimodal and another bimodal), when the
negative class is surrounded by the positive class on both sides
(Figure 7B).

Discrimination of Two Unimodal Classes. As the first
example we used the data drawn from two log-normal
distributions centered at log(x) = −0.55 (class +1) and log(x)
= −2.05 (class −1) with standard deviation of 0.5 (Figure 7A).
The data has been generated on a log-scale since it is the
natural scale of the response of the genetic circuit used in the
classifier (Figure 2). Figure 7A gives an illustration of the two
generating distributions. The optimal theoretical performance is
determined by choosing the threshold that separates the
positive-class distribution from the negative one in a manner
that minimizes discrimination errors. In this particular case, the
optimal threshold value that leads to the minimal number of
errors and therefore to the maximum performance is located
exactly in the middle between the peaks of the two distributions
which is indicated by the blue dashed vertical line (log (x) =
−1.3). Due to the nonseparability of the two classes, it is

Figure 5. Algorithm 2: Algorithm for testing the gene expression
classifier.

Figure 6. (A) Definition of positive and negative classes for two
additively interacting toxins. (B) Positive and negative classes
separable in two dimensions become nonseparable in one dimension,
that is, when only the concentration of one of the toxins can be
measured directly and the other becomes a hidden random variable.
For illustrative purposes, we assumed log-normal distributions of toxin
concentrations. A histogram of 106 examples is shown. Optimal
decision boundary for a naive Bayes classifier is shown with a dashed
line.

Figure 7. Data is generated from two (left) or three (right) log-normal
distributions generating the positive class (green) and the negative
class (red) examples. The optimal thresholds for discriminating
between the classes are represented by the dashed vertical lines. The
maximum performance achievable by a classifier trained on infinite
amount of examples from the two distributions is 93.3%, from the
three distributions is 94.8%. The minimum in both cases is 50% which
is equivalent to a random answer selection.
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impossible to solve this classification problem with 100%
success rate. The optimal theoretical performance for this
problem is 93.3%. An ideal classifier could approach this value
for infinite amount of training and evaluation data.
Using a “hard” learning strategy (small γ = 0.1), the

population-based classifier achieves high performance of 91.6%
in just 12 iterations; however, with further training the
performance deteriorates achieving 86.1% after 200 iterations
(Figure 8A). These results are obtained using Nc = 104 cells (all
other circuit parameters are as described in Figure 2). Such
deterioration of performance is a well-known phenomenon in
machine learning, where early stopping is often applied in
similar situations.46,47

In contrast, as discussed above, a “soft” learning strategy (γ =
1.0) allows one to achieve the maximum performance (92.0%)
with high robustness over a wide range of training iterations
(Figure 8A). Relatively small number of cells is sufficient to
achieve such performance (Figure 8B). The classifier is also
robust to readout noise (Figure 8C).
The evolution of the parameters of the classifier during “soft”

training is demonstrated in Figure 8D−I. The training process
leads to a robust selection of the cells with those values of the
genetic diversity parameter mu that allow the normalized
population-wide GFP response f(x) to roughly track the

positive class data distribution (Figure 8E−F, H−I). Corre-
spondingly it is possible to reliably select such a threshold θ
(Algorithm 2, Figure 5) that allows the classifier to achieve
performance close to the theoretical maximum for this problem
after roughly 50 training iterations (Figure 8G).
We also analyzed the performance of the distributed classifier

on the more realistic unimodal example of dual-toxin cell
viability classification with one toxin measured and another
unobserved which was introduced in the beginning of this
section (see Supporting Information Section 2). The classifier
achieves high performance of about 95% after learning just 15
examples using “hard” (γ = 0.1) training strategy (Figure S3 of
the Supporting Information).

Discrimination of a Bimodal and a Unimodal Class.
This is a more challenging one-dimensional classification
problem where a negative class is “sandwiched” by the positive
class on both sides (Figure 7B). The negative class data is
generated by a log-normal distribution centered at log(x) =
−0.8. The positive class data is generated from two equivalent
log-normal distributions centered at log(x) = −1.3 and −0.3.
The standard deviation of all three distributions is 0.14. The
distributions are normalized such that on average the equal
number of examples is drawn from the negative and positive
classes. The maximum theoretical performance on this problem

Figure 8. Classification results for the data set drawn from two unimodal classes, Figure 7A. (A) Evolution of the classifier performance for γ = 0.1
(“hard” learning; blue) and γ = 1 (“soft” learning; red), population size Nc = 104 cells. The classifier performance versus cell population size Nc (B) or
GFP fluorescence readout noise σ (C); γ = 1 in (B) and (C), Nc = 104 in (C). The median and interquartile range of the distribution of the classifier
performance calculated from 103 different stochastic realizations are shown in parts A−C, readout noise σ = 1/35 in A and B. (D−I) Evolution of the
parameters of the classifier before and after trainingan example trajectory. The parameters used are γ = 1, Nc = 104, σ = 1/35. It illustrates the shift
in the distribution of parameters due to the training process of elimination of cells. The distribution of RBS/promoter strengths mu before training
(D) and after 200 training iterations (E). (F) Normalized GFP fluorescence of the ensemble of cells f(x) (blue) after 200 training iterations, log-
normal distributions generating positive (green) and negative (red) class examples. (G) Evolution of the classifier performance in this realization.
Evolution of mu distribution (H) and normalized cumulative GFP fluorescence f(x) (I).
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is 94.8%, determined as in the example above. We use the same
genetic circuit parameters as in the previous example (see
Figure 2).
This classification problem exemplifies the differences

between the “hard” and “soft” learning strategies (Figure 9A).
Similarly to the previous example the “hard” learning strategy
(γ = 0.1) initially leads to rapid improvement of classifier
performance, reaching the maximum performance of 87.7% in
14 iterations. However, unlike the previous example, this
increase is not robust and is characterized by high stochastic
variability (compare Figures 8A and 9A). With further training
the performance quickly degrades due to stochastic extinction
of the cells fitting one of the two positive class distribution
peaks (see the details below). These problems can be
ameliorated by employing “soft” training strategy (γ = 1)
(Figure 9A). In this case, the maximum performance is higher
(92.9%) and is achieved much more reliably albeit in noticeably
higher number of training iterations. Similarly to the previous
example, relatively low number of cells is sufficient to achieve
this performance (Figure 9B). The performance is robust with
respect to the readout noise (Figure 9C). An example of the
evolution of the parameters of the classifier during “soft”
training is shown in Figure 9D−I.

Analytical Description of Soft-Learning Performance.
We have developed an analytical theory that describes the
training and the resulting performance of the cell-based
classifier in the limit of “soft” learning (see Supporting
Information Section 1). This analytical description is exact in
the case of infinitely “soft” learning and infinite number of cells.
It is based on the assumption that at each training iteration the
distribution of cells is changed by infinitely small amount,
correspondingly requiring an infinite number of training
iterations to achieve finite changes in cell distribution. Thus,
the discrete iteration step can be replaced by continuous “time”
t, and the evolution of the number of cells ni with a given value
mi of genetic diversity parameter mu, in the course of training
can be described by a differential equation

∑λ λ= −
n
t

n
n
N

n
d
d

i
i i

i

c k
k k

where Nc is the total number of cells (fixed) and λi is a “shaping
factor” which depends on the distributions of the positive and
negative training examples w±(x), mi-dependent single cell GFP
response functions z(x;mi) and the corresponding cell survival
probabilities p±(z) (see Supporting Information Section 1).
The solution of this equation approximates an ensemble
average solution in the case of finite “softness”, number of

Figure 9. Classification results for the data set drawn from one bimodal and one unimodal classes, Figure 7B. (A) Evolution of the classifier
performance for γ = 0.1 (“hard” learning; blue) and γ = 1 (“soft” learning; red), population size Nc = 104 cells. The classifier performance versus cell
population size Nc (B) or GFP fluorescence readout noise σ (C); γ = 1 in (B) and (C), Nc = 104 in (C). The median and interquartile range of the
distribution of the classifier performance calculated from 103 different stochastic realizations are shown in parts A−C, readout noise σ = 1/35 in A and
B. (D−I) Evolution of the parameters of the ensemble of cells before and after training−an example trajectory. The parameters used are γ = 1, Nc =
104, σ = 1/35. It illustrates the shift in the distribution of parameters due to the training process of elimination of cells. The distribution of RBS/
promoter strengths mu before training (D) and after 200 training iterations (E). (F) Normalized GFP fluorescence of the ensemble of cells f(x)
(blue) after 200 training iterations, log-normal distribution generating positive (green) and negative (red) class examples. (G) Evolution of the
classifier performance in this realization. Evolution of mu distribution (H) and normalized cumulative GFP fluorescence f(x) (I).
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training steps (N), and finite number of cells by formally setting
t = N/2. Figure 10 demonstrates the good agreement between
the analytical solutions for the ensemble- averaged mu

distribution, population average GFP response, and the
ensemble average classifier performance and the simulation
results for “soft” learning with γ = 1. Note that the performance
figures calculated analytically are consistently higher than the
ensemble average performance figures calculated from the
simulations (Figure 10C, F). This is largely due to the fact that
the analytical approximation is based on asymptotic analytical
solution which ignores the stochastic effects due to the finite
number of iterations.
This analytical theory allows to quickly estimate the

parameters for optimal training of the distributed cell
population based classifier for a given classification problem.
In comparison, the stochastic simulations necessary to estimate
the same training parameters are significantly more computa-
tionally expensive. If necessary, the results of the analytical
approximation can be confirmed by stochastic simulations.
Another important result that follows from the analytical

approximation is that early stopping must be always used in
order to maximize the classifier performance, even in the case
of infinitely “soft” learning, since after large number of training
iterations (N→∞) only the cells with the maximum λi survive.
In most practical cases, it means that the cells with only one
particular value of mi survive, thus generally leading to poor
classifier performance.
Summary and Discussion. In this paper, we introduced a

conceptual design of a distributed classifier in the form of a
population of microorganisms containing a strategically

constructed library of sensory gene circuits. We described an
algorithm of training such a classifier by pruning the master
population after iterative presentation of known positive and
negative input−output examples. We characterized both
numerically and analytically the performance of the proposed
classifier based on a particular sensory gene circuit that is
induced by the external chemical input within a certain range of
concentrations and repressed outside of it. A library containing
a broad distribution of such circuits with different sensitivities
to the chemical input in individual cells within the master
population can be constructed by randomizing the control
sequences within the input genetic element of the sensing
circuit. We demonstrated that after appropriate training the
distributed classifier can achieve nearly optimal performance in
solving the task of discriminating nonseparable input data sets.
In this theoretical study we have not addressed in detail

several important issues that are likely to arise in the
experimental implementation of the distributed classifier. One
such issue is the specific procedure to retain the “good” cells
and discard the “bad” ones. The most straightforward way to do
this is to use a fluorescence-activated cell sorting (FACS).
However, typical commercial FACS software allows one only to
select cells deterministically with a measured fluorescent value
(or a combination of multiple values) within a certain range
the process known as “gating”rather than to sort cells with a
certain probability based on their fluorescence levels. We
envisage two ways to circumvent this problem. First, any
smooth probability function can be approximated to a required
precision by a step function by dividing the entire range of cell
fluorescence on a sufficiently high number of bins. Cells with

Figure 10. Comparison of the analytical theory with the simulation results for the case of soft-learning (γ = 1). (A−C) Discrimination of two log-
normal classes. (D−F) Discrimination of a bimodal vs a unimodal class. (A, D) Ensemble average distribution of the genetic diversity parameter mu
calculated after 200 training iterations from 103 independent simulations (blue bars) vs the analytical prediction (black dashed line). (B, E) Ensemble
average population-wide GFP responses calculated after 200 training iterations from 103 independent simulations (blue line) vs the analytical
prediction (black dashed line). (C, F) Ensemble average classifier performance calculated from 103 independent simulations vs the analytical
prediction; the simulation results are shown as mean ± standard deviation. All other simulation parameters are the same as in Figures 8D−I and
9D−I.
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the fluorescence values falling within each bin can be
independently sorted using standard FACS systems and later
combined in proportions according to the corresponding
probabilities of the smooth probability function. Alternatively, a
probabilistic selection algorithm could implement directly by
straightforward adaption of the FACS control software if the
hardware programming interface is available. A potentially more
interesting approach allowing for autonomous and adaptable
training could be to engineer an additional synthetic gene
circuit controlling cell growth based on the output signal, using
for example one of well-characterized positive/negative
selection systems.41

In this study, we assumed that the promoter strength
parameters are initially distributed uniformly over a broad
range; however, experimentally the distribution would likely be
nonuniform. This nonuniformity may affect the ability to train
the classifier to an arbitrary classification task. In order to
estimate how sensitive the performance of the proposed
classification system may be to nonuniformity of the initial
distribution of parameters, we have calculated the performance
of our distributed classifier starting with model distributions of
varying degrees of nonuniformity (Supporting Information
Section 4). Based on these calculations, we estimate that
depending on the classification problem a moderate degree of
nonuniformity can be tolerated. However, the more uniform
the initial distribution is, the better the final performance of the
trained classifier will be, so the design of a uniform library is
one of the important considerations for the future experimental
implementation of the classifier. Such a library may have to be
designed and synthesized, preselected from a random library, or
both (see the discussion in Supporting Information Section 4).
Finally, we did not take into consideration the growth and
division of cells that can affect the distribution of cells within
the trained population if cells with different sensory circuit
parameters differ in their doubling rates, for example, due to
respective differences in metabolic burden exerted by these
circuits.
The particular design of a distributed classifier presented here

is suitable for classification of a scalar input (single chemical
inducer X) only. Many real-world classification problems
involve multidimensional inputs. The one-dimensional classifier
described in this paper can be generalized to solve multidimen-
sional problems. In the simplest case of multidimensional
classification where each dimension can be classified
independently, the problem can be trivially solved by a cell
population classifier consisting of a mixture of cells capable of
responding individually to just one input using the circuit
described in Figure 1. However, such approach would fail for
more complex classification problems when a multidimensional

distribution of positive or negative outcomes is not the direct
product of corresponding one-dimensional distributions. These
more complex problems can be solved using a classifier built
with the cells endowed with circuits that are sensitive to
multiple inputs. An example of such circuit design for a two-
dimensional input is shown in Figure 11. In this design, the
input signals are sensed separately by the corresponding two-
stage modules similar to described above. The outputs of these
two modules are then combined by a genetic AND gate. A
number of circuits performing logical operations including
AND have been developed and characterized recently.48−50

Similarly to the one-dimensional circuit the output of this
circuit is a two-dimensional bell-shaped function of the two
inputs (Figure 11A). The parameters of both sensory circuits
can be randomized as before. These multidimensional classifiers
can be trained and the performance can be characterized in the
same way as in the case of the one-dimensional classifier.
From synthetic biology perspective, our modeling study

opens an intriguing possibility to engineer genetically
diversified microbial populations to solve classification tasks
which are difficult or impossible to solve within a single
microbial cell. Such approach is known in machine learning
theory where it was proven that consensus classifiers made of
appropriately combined weak classifiers can achieve high
performance.51,52 We anticipate that beyond conceptual
academic interest, autonomous cell population-based classifiers
can have biotechnological and medical applications. The
proposed circuit and its training algorithm could potentially
be used to facilitate biosensor design. An autonomous classifier
could directly produce a biologically relevant response, for
example a drug or a signaling molecule can be synthesized in
situ when the measured input concentration falls within or
outside an optimal range. Such autonomous systems capable of
responding to a complex input can be used e.g. to control
bioreactors or as prosthetic control systems for use in living
organisms. On a more general level, our findings suggest that
perhaps the genetic and phenotypic diversity found in many
natural populations,53,54 along with other potential survival
benefits55 can play an important role in forming a decentralized
“social intelligence”15,56 capable of solving complex computa-
tional tasks in a noisy and unpredictable environment.
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Figure 11. (A) Desired bell-shaped response of the multidimensional classification circuit. (B) The genetic circuit proposed for use in a distributed
genetic classifier with multiple inputs per cell. Independent sensing and response functionalities are combined using an appropriate biological AND
gate. The resulting response function of the entire two-promoter circuit is bell-shaped with respect to the inputs X1 and X2 for the relevant choice of
parameters.
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distribution in “master population”. This material is available
free of charge via the Internet at http://pubs.acs.org.
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